Search results for " Tellurium compounds"

showing 6 items of 6 documents

Study of Beauty Hadron Decays into Pairs of Charm Hadrons

2014

First observations of the decays Λ[0 over b] → Λ[+ over c]D[− over (s)] are reported using data corresponding to an integrated luminosity of 3  fb[superscript −1] collected at 7 and 8 TeV center-of-mass energies in proton-proton collisions with the LHCb detector. In addition, the most precise measurement of the branching fraction B(B[0 over s] → D[superscript +]D[− over s]) is made and a search is performed for the decays B[0 over (s)] → Λ[+ over c]Λ[− over c]. The results obtained are B(Λ[0 over b] → Λ[+ over c]D[superscript −])/B(Λ[0 over b] → Λ[+ over c]D[− over s]) = 0.042 ± 0.003(stat) ± 0.003(syst), ⎡⎣B(Λ[0 over b] → Λ[+ over c]D[− over s]) over B([¯ over B[superscript 0] → D[superscr…

Particle physicsMesonHadronNuclear TheoryGeneral Physics and AstronomyFOS: Physical sciencesLHCb - Abteilung Hofmann13.30.-aSettore FIS/04 - Fisica Nucleare e SubnucleareHigh Energy Physics - ExperimentNuclear physicsPhysics and Astronomy (all)High Energy Physics - Experiment (hep-ex)precise measurements14.20.Mr[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]TOOLCharm (quantum number)MASSESNuclear ExperimentQCBARYONSPhysicsLuminosity (scattering theory)Branching fractioncenter-of-mass energiesintegrated luminositybaryons; masses; toolParticle physicsBaryonproton proton collisionsLHCbprecise measurements; center-of-mass energies; tellurium compounds; integrated luminosity; hadrons; branching fractions; proton proton collisionshadronsDecays of baryonbranching fractionsBottom baryons (|B|>0)Física nuclearHigh Energy Physics::ExperimentLHCFísica de partículesExperimentstellurium compoundsTellurium compoundsParticle Physics - Experiment
researchProduct

Observation of Photon Polarization in theb→sγTransition

2014

This Letter presents a study of the flavor-changing neutral current radiative $B^{\pm} \to K^{\pm}\pi^{\mp}\pi^{\pm}\gamma$ decays performed using data collected in proton-proton collisions with the LHCb detector at $7$ and $8\,$TeV center-of-mass energies. In this sample, corresponding to an integrated luminosity of $3\,\text{fb}^{-1}$, nearly $14\,000$ signal events are reconstructed and selected, containing all possible intermediate resonances with a $K^{\pm}\pi^{\mp}\pi^{\pm}$ final state in the $[1.1, 1.9]\,$GeV/$c^{2}$ mass range. The distribution of the angle of the photon direction with respect to the plane defined by the final-state hadrons in their rest frame is studied in interva…

Final statePhotonmedia_common.quotation_subject14.40.NdHadronGeneral Physics and AstronomyLHCb - Abteilung Hofmann12.15.MmAsymmetryHigh energy physics Polarization Tellurium compounds; Center-of-mass energies Direct observations Final state Flavor-changing neutral current Integrated luminosity Photon polarization Proton proton collisions; PhotonsNeutral currentNuclear physicsTellurium compoundsCenter-of-mass energiesPhysics and Astronomy (all)Flavor-changing neutral currentPolarizationPhoton polarizationLeptonic semileptonic and radiative decays of bottom mesonRadiative transferIntermediate stateSDG 7 - Affordable and Clean EnergyHigh energy physicsQCmedia_commonPhysicsIntegrated luminosityPhotons/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyProton proton collisionsNeutral currentDirect observationsParticle physicsRest framePhoton polarizationLHCb13.20.HeBottom mesons (|B|>0)High Energy Physics::ExperimentLHCFísica de partículesExperimentsPhysical Review Letters
researchProduct

The DArk Matter Particle Explorer mission

2017

The DArk Matter Particle Explorer (DAMPE), one of the four scientific space science missions within the framework of the Strategic Pioneer Program on Space Science of the Chinese Academy of Sciences, is a general purpose high energy cosmic-ray and gamma-ray observatory, which was successfully launched on December 17th, 2015 from the Jiuquan Satellite Launch Center. The DAMPE scientific objectives include the study of galactic cosmic rays up to $\sim 10$ TeV and hundreds of TeV for electrons/gammas and nuclei respectively, and the search for dark matter signatures in their spectra. In this paper we illustrate the layout of the DAMPE instrument, and discuss the results of beam tests and calib…

Physics - Instrumentation and DetectorsSatellite launchesGamma ray observatoriesAstrophysicsGalactic cosmic rays01 natural sciencesCosmologyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)ObservatoryDetectors and Experimental TechniquesCosmic rays dark matter space experiments010303 astronomy & astrophysicsphysics.ins-detSpace science missionsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEAstrophysics::Instrumentation and Methods for AstrophysicsInstrumentation and Detectors (physics.ins-det)CosmologyCosmology Galaxies Gamma rays Tellurium compounds Chinese Academy of Sciences Dark matter particles Explorer missions Galactic cosmic rays Gamma ray observatories Satellite launches Scientific objectives Space science missions Cosmic raysSpace ScienceAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaParticle Physics - ExperimentAstrophysics and AstronomyAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesCosmic raydark matterTellurium compounds0103 physical sciencesCosmic raysInstrumentation and Methods for Astrophysics (astro-ph.IM)010308 nuclear & particles physicshep-exGamma raysAstronomyAstronomy and AstrophysicsGalaxiesChinese academy of sciencesGalaxyScientific objectivesDark matter particlesChinese Academy of SciencesSatellitespace experimentsExplorer missionsastro-ph.IM
researchProduct

Precision Measurement of the Mass and Lifetime of the Ξ[0 over b] Baryon

2014

Using a proton-proton collision data sample corresponding to an integrated luminosity of 3 fb$^{-1}$ collected by LHCb at center-of-mass energies of 7 and 8 TeV, about 3800 $\Xi_b^0\to\Xi_c^+\pi^-$, $\Xi_c^+\to pK^-\pi^+$ signal decays are reconstructed. From this sample, the first measurement of the $\Xi_b^0$ baryon lifetime is made, relative to that of the $\Lambda_b^0$ baryon. The mass differences $M(\Xi_b^0)-M(\Lambda_b^0)$ and $M(\Xi_c^+)-M(\Lambda_c^+)$ are also measured with precision more than four times better than the current world averages. The resulting values are $\frac{\tau_{\Xi_b^0}}{\tau_{\Lambda_b^0}} = 1.006\pm0.018\pm0.010$, $M(\Xi_b^0) - M(\Lambda_b^0) = 172.44\pm0.39\pm…

Nuclear TheoryAnalytical chemistryGeneral Physics and Astronomyinclusive weak decays; discarding 1/N(C); beaty; charm; ruleLambdaHigh Energy Physics - Experimenthigh energy physicsSettore FIS/04 - Fisica Nucleare e Subnucleare[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]INCLUSIVE WEAK DECAYS; DISCARDING 1/N(C); BEAUTY; CHARM; RULENuclear ExperimentQCPhysicsprecision measurementPhysicsintegrated luminosityParticle physicsBEAUTYtransverse momentaPseudorapidityPhysical SciencesTransverse momentumINCLUSIVE WEAK DECAYSFísica nuclearLHC13.30.Egtellurium compoundsParticle Physics - Experiment530 PhysicsAstrophysics::High Energy Astrophysical PhenomenaPhysics MultidisciplinarypseudorapiditiesPhysics InstituteLHCb - Abteilung HofmannAstrophysics::Cosmology and Extragalactic AstrophysicsCHARMNuclear physicsPhysics and Astronomy (all)Pi14.20.MrScience & Technologycenter-of-mass energiesmass differencetransverse momenta; precision measurement; center-of-mass energies; tellurium compounds; production rates; pseudorapidities; high energy physics; integrated luminosity; hadrons; mass difference; proton proton collisionsDISCARDING 1/N(C)BaryonLHCbproton proton collisionshadronsHadronic decays of baryonBottom baryons (|B|>0)Physics::Accelerator Physicsproduction ratesFísica de partículesExperimentsRULE
researchProduct

First measurement of the charge asymmetry in beauty-quark pair production.

2014

The difference in the angular distributions between beauty quarks and antiquarks, referred to as the charge asymmetry, is measured for the first time in b[bar over b] pair production at a hadron collider. The data used correspond to an integrated luminosity of 1.0  fb[superscript −1] collected at 7 TeV center-of-mass energy in proton-proton collisions with the LHCb detector. The measurement is performed in three regions of the invariant mass of the b[bar over b] system. The results obtained are A[b[bar over b] over C](40 105  GeV/c[superscript 2]) = 1.6 ± 1.7 ± 0.6%, where A[b[bar over b] over C] is defined as the asymmetry in the difference in rapidity between jets formed from the beauty q…

ROOT-S=7 TEV; COLLISIONS; DETECTOR; DECAYcharge asymmetriesGeneral Physics and Astronomy7. Clean energyHigh Energy Physics - ExperimentSettore FIS/04 - Fisica Nucleare e Subnuclearehigh energy physicsthe standard model[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]photonsInvariant massNuclear ExperimentQCmedia_commonPhysicsLarge Hadron Colliderhadron collidersintegrated luminosityParticle physicsroot-S=7 Tev; colisions; detector; decayFísica nuclearLHCtellurium compoundsParticle Physics - ExperimentQuarkCOLLISIONSParticle physics530 Physicsmedia_common.quotation_subjectPhysics InstituteLHCb - Abteilung HofmannBottom quarkAsymmetryStandard ModelNuclear physicsPhysics and Astronomy (all)RapiditySDG 7 - Affordable and Clean EnergyDETECTOR14.65.Fyhadron colliders; tellurium compounds; center-of-mass energies; transverse planes; charge asymmetries; integrated luminosity; high energy physics; pair production; photons; the standard model; proton proton collisions/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyROOT-S=7 TEVcenter-of-mass energiesHigh Energy Physics::PhenomenologyBottom quarkproton proton collisionsLHCbpair productionPair productiontransverse planesHigh Energy Physics::ExperimentFísica de partículesExperimentsDECAYPhysical review letters
researchProduct

Search for Magnetic Monopoles with the MoEDAL Forward Trapping Detector in 13 TeV Proton-Proton Collisions at the LHC

2017

MoEDAL is designed to identify new physics in the form of long-lived highly-ionising particles produced in high-energy LHC collisions. Its arrays of plastic nuclear-track detectors and aluminium trapping volumes provide two independent passive detection techniques. We present here the results of a first search for magnetic monopole production in 13 TeV proton-proton collisions using the trapping technique, extending a previous publication with 8 TeV data during LHC run-1. A total of 222 kg of MoEDAL trapping detector samples was exposed in the forward region and analysed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges excee…

Magnetic monopolesProtonMagnetismPhysics beyond the Standard ModelGeneral Physics and Astronomy01 natural sciences7. Clean energyHigh Energy Physics - Experimentlaw.inventionCOLLIDERHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)STOPPING-POWERlawPhysics02 Physical SciencesLarge Hadron ColliderSTABLE MASSIVE PARTICLESPhysicsMagnetismDrell–Yan processhep-phPersistent currents3. Good healthHigh Energy Physics - PhenomenologyPhysical SciencesELECTROWEAK MONOPOLEParticle Physics - ExperimentGeneral PhysicsMagnetometerPhysics MultidisciplinaryMagnetic monopoleFOS: Physical sciencesNuclear track detector114 Physical sciencesNuclear physicsPhysics and Astronomy (all)Tellurium compoundsHigh energy physics Magnetism Magnetometers Highly ionizing particles Magnetic charges Magnetic monopoles Nuclear track detector Passive detection Persistent currents Proton proton collisions Trapping techniques Tellurium compounds0103 physical sciencesHigh energy physics010306 general physicsColliderIONIZING PARTICLESScience & TechnologyProton proton collisionshep-ex010308 nuclear & particles physicsMagnetometers Highly ionizing particlesMagnetic chargesTrapping techniquesPassive detectionSTATES
researchProduct